Health   |    Holistic Healing   |    Lifestyle & Fitness  
|    Peace & Spirituality   |    Sex & Health   |    Dentists    

A novel approach for treating fluorosis stains

Dental fluorosis is a common disease in punjab(india).it is due to an unusually high dose of fluorides during odontogenesis causing a structural modification of hard dental tissues and thereby resulting in a hypomineralisation of these tissues.fluorotic enamel is a hypocalcified, porous,brittle and most unaesthetic tissue. Bleaching has been suggested by several authors in order to treat the unaesthetic aspect of dental fluorosis, but many results are however unsatisfactory. This is a novel method which is based on the structural characteristics of the fluorotic ename & organic and exogenous nature of fluorotic enamel stains which includes four different stages:-

1) Cleansing the enamel surface with pumice 2) Enamel etching with hydrochloric acid 3) application of sodium hypochlorite. 4) application of dental adhesives.


A frequent question asked by most of patients residing in the fluorotic belt of punjab (india) is "will my tooth turn white?" Usually the answer is a "yes" with the explanation that the modern dental treatment procedures are such as to esthetically synchronise the facial harmony of tooth structure.the reason for this discoloration is a high fluoride concentration in water in certain areas of punjab. the normal colour of permanent teeth is greyish yellow, greyish white or yellowish white but the number of people with this colour are usually limited owing to over aggressive tooth brushing and abrasive cleansing materials, acidic food and drinks and last but not the least,ageing. The elderly people thus, have more yellowish teeth as compared to younger persons.these alterations in colour maybe physiologic or pathologic and endogenous or exogenous in nature. the modern era is an era of esthetics. People having teeth with normal colour also want to have whiter teeth to improve their smile. So one cannot ignore the wishes of such patients and hence bleaching, as we know, has emerged as the simplest, most common, least invasive and least expensive means available to dentists to lighten discoloration.


Many agents have been used in the past and a number of new methods have continued to be introduced. It was oxalic acid first by chappel in 1877 which was followed by various forms of chlorine, until hydrogen peroxide was first used by harlan in 1884. Many advances continued focussing basically on the ways to facilitate the absorption of bleaching agent. The recent developments of hi-tech computer imaging have enhanced patient understanding, expectation and ultimately satisfaction.

Mode of action

Bleaching works by oxidation in which the bleaching agent enters the enamel &/or dentin of the discolored tooth and reduces the molecules containing discoloration. The bleaching depth depends on the cause of the stains and where and how deep the stain has permeated the tooth structure plus how deep the bleaching agent can permeate to the source of discoloration and remain there long enough to release deep stains.

Etiology of tooth discoloration

Extrinsic discolorations are found on outer surface of teeth and are usually Of local origin e.g. Tobacco, paan, tea, coffee, silver nitrate stains, oral intake of iron suspensions, continuous use of mouth washes and gum paint. Intrinsic the stains are found within the enamel and dentin and are caused by The deposition of the substances within these structures e.g. Tetracycline, Fluorosis stains, amelogenesis imperfecta, dentinogenesis imperfecta, pulp necrosis etc.


fluorosed teeth are also called mottled teeth . Such teeth appear when child ingests excessive fluoride during enamel formation or calcification in areas where drinking water contains more than 1ppm of Fluoride. The higher concentration of fluoride is believed to cause a metabolic alteration in the ameloblasts which results in defective matrix & improper calcification. 1ppm of fluoride has no biological side effects on The vital organs of human body i.e. Kidney, heart & lungs. Fluoride up to 4ppm in drinking water occasionally produces skeletal fluorosis but above 8ppm coupled with malnutrition positively causes not only skeletal fluorosis but irreversible bone changes & deformity as well.


histological examination shows hypomineralised, porous sub-surface enamel below a well mineralised surface layer. The most affected teeth (in decreasing order) are premolars, 2ndmolars, followed by maxillary incisors, canines & 1st molars. Mandibular incisors are affected least.

Stages of fluorosis

the appearance of teeth depends upon the severity of the lesion which in turn depends upon the fluoride contents consumed by a particular individual through the water supply.

1) the constant use of water having fluoride to the extent of 1ppm causes mildest grade of mottling in 10% of the population.

2) as concentration of fluoride increases, the effect worsens, so much so that when the concentration reaches 6ppm,incidence of mottling is 100%.

3) very mild :- in this type there are very small white areas occasionally seen on the tooth surfaces, but do not involve more than 25% of tooth surfaces.

(4) mild :- in this type there is more extensive tooth involvement and involves 50% of tooth surfaces.

(5) moderate :- more surfaces are involved here and are subjected to attrition. They show marked wear with yellow or brown pigmentation.

(6) severe :- all enamel surfaces are involved, so much so that the tooth mor phology is affected.there is discrete or confluent pitting of enamel surfaces. Brown stains are widespread & the tooth often presents a corroded surface.

Optimum fluoride levels

In cold climate, recommended fluoride levels may be as high as 1.2 ppm whereas in extremely hot climate, a level of 0.7 ppm is recommended. In moderate climate, the optimum fluoride level is 1 ppm. High temperature causes increase in mottling because there is increased consumption of water containing fluoride. Distribution of mottling in various areas of teeth has no relation with periods of mineralisation of crown. Teeth are only affected provided the child lives in the area of fluorosis during the time of enamel mineralisation. Brown tooth stains respond to treatment but white stains are not effectively resolved. It has been observed that teeth in process of eruption receive maximum benefit from optimum amount of fluoride plus teeth exposed to f shortly after eruption were also protected although to a lesser degree.

Different f levels in punjab & other states of india

I) Punjab
1) bhatinda - 4.5 ppm
2) mansa - 4.2 ppm
3) mukatsar - 3.3 ppm
4) faridkot - 3 ppm
5) ferozepur - 2.6 ppm
6) moga - 2 ppm
7) sangrur - 1.35 ppm
8) jalandhar - 0.55 ppm
9) amritsar - 0.45 ppm
10) hoshiarpur - 0.44 ppm
11) nawanshahar - 0.4 ppm
12) fatehgarh sahib - 0.37 ppm
13) patiala - 0.35 ppm
14) ropar - 0.3 ppm
15) kapurthala - 0.25 ppm
16) ludhiana - 0.22 ppm
17) gurdaspur - 0.15 ppm

II) Andhra Pradesh
1) nalgonda - 20.6ppm
2)prakasan - 12.0ppm
3)vishakhapatnam - 11.0ppm
4) anantpur - 10.1ppm
5)guntar - 10 ppm
6)medak - 9.8ppm
7)kunoor - 9.6ppm
8)nellore - 8 ppm
9)mehboobnagar - 6.4 ppm
10)warrangal - 5.8 ppm
11) kareemnagar - 4.9 ppm
12) hyderabad - 4.8ppm
13) cuddapah - 4.6ppm
14) nizamabad - 3.0ppm
15) chittoor - 2.9 ppm
16) adkabab - 2.8 ppm
17) srikakalam - 2.8 ppm
18) Godavari - 1.6 ppm

III) Gujarat
1) kutch - 1.2 -- 11 ppm
2) bhavnagar - 1.5 - 4ppm
3) jamnagar - 1.5 - 4ppm
4) rajkot - 2.5ppm
5) saurashtra - 1.5 - 2.5 ppm
6) rajpur - 0 - 2.5 ppm
7) banakanta - 1.5 - 2ppm
8) godar - 1.6 - 1.7ppm
9) godhra - 0 - 1.6 ppm
10) surinderanagar - 0 - 1.5 ppm
11) surat - 0 - 1.3 ppm

IV) Tamil Nadu
1) Coimbatore 2) Dharampur 3) Madurai 4) Narkot 5) Salem 6) Trichi
all 1.5 --- 5ppm

V) Kerala
1) Allepey 2) Eranakulam 3) Quillon 4) Trichur
all 0 -- 1.5 ppm

V) Rajasthan
1) Bharatpur - 28ppm
2) Tonk - 21ppm
3) Alwar - 20.6ppm
4) Sikar - 19.1ppm
5) Ajmer - 18.4ppm
6) Bhilwara - 16.5ppm
7) Swaimadhopur - 16.1ppm
8) Jhalawar - 16ppm
9) Churu - 16ppm
10) Jodhpur -16ppm
11) Sirohi - 15.8ppm
12) Jaipur - 15ppm
13) Nalpur - 14.2ppm
14) kota - 14.2ppm
15) dungarpur - 12ppm
16) bikaner - 10.2ppm
17) barmer - 10ppm
18) pali -- 9.1ppm
19) ganganagar - 9ppm
20) jalour -- 8ppm
21) wagpur - 7.1ppm
22) chittorgarh - 6ppm
23) bundi - 5.8ppm
24) banswara - 4.3ppm
25) jhunjhunu - 2.2ppm

VI) Uttar Pradesh
1) Gorakhpur - 0.6-6.8ppm
2) Shahjahanpur - 4ppm
3) Lakhpur -0.1-4ppm
4) Rai bareilly - 0.6-3ppm
5) Banda - 0.6-3ppm
6) Agra - 0.2-3ppm
7) Kanpur - 0.2-3ppm
8) Varanasi - 0.2-3ppm
9) Unna - 0.1-3ppm
10) Aligarh - 0.4-2ppm
11) Allahabad - 0.2-2ppm
12) Itah -0.8-1.6ppm
13) Hamirpur - 0.6-1.6ppm
14) Azamgarh - 0.1-1.6ppm
15) Muradpur - 1.0-1.4ppm
16) Jamalpur - 1.0-1.2ppm
17) Lucknow - 0.8-1.2ppm
18) Meerut - 0.4-1.2ppm
19) Bulandshahar - 0.4-1.2ppm
20) Dijnor - 0.2-1.2ppm
21) Jhansi - 0.2-1.2ppm
22) Bareilly 0.1-0.9ppm
23) Balliya - 0.4-0.8ppm
24) Barabanki - 0.4-0.8ppm
25) fatehgarh - 0.4-0.8ppm
26) mirzapur - 0.4-0.8ppm
27) gadhepur - 0.3-0.8ppm
28) gonda - 0.2-0.8ppm
29) basti - 0.2-0.8ppm
30) jalpum - 0.1-0.8ppm
31) dehradun - 0.1-0.8ppm
32) pratapgarh - 0.4-0.6ppm
33) manipuri - 0.4-0.6ppm
34) lahtpur - 0.1-0.6ppm
35) muzaffarnagar - 0.2-0.5ppm
36) rampur - 0.2-0.4ppm
37) pilibhit - 0.2-0.4ppm
38) bijnor - 0.1-0.4ppm
39) fatehabad - 0.1-0.4ppm
40) badari - 0.1-0.4 ppm
41) sitapur - 0.1-0.4ppm
42) saharanpur - 0.1-0.4ppm
43) mathura - 0.1-0.4ppm
44) faizabad - 0.2ppm
45) etawah - 0.1-0.2ppm
46) nainital - 0.1-0.2ppm
47) dahrich - 0.1-0.2ppm
48) sultanpur - 0.1ppm

Treatment options

Basically for all these stains or in particular fluorotic stains the treatment options available to us include :-

1) Veneering / laminates or placement of porcelain crowns 
2) Micro / macroabrasion 
3) Bleaching - a) vital tooth inoffice bleaching b) nightguard home bleaching c) our novel method of inoffice bleaching

1) Veneering or laminates or ceramic crowns

1) esthetically more acceptable
2) Long lasting
3) Durable
4) Simple
5) Can be given over endodontically treated tooth
6) more strength and resistance to forces

1) brittle
2) less shear strengh
3) causes loss of tooth structure
4) patient may not be willing
5) susceptible to fracture
6) due to tooth reduction, pulp & other tissues may face trauma
7) overcontouring may make it appear & feel unnatural
8) vitality tests cannot be done once crowns are properly fit
9) post cementation caries difficult to detect
10) lab.procedure needs precision for proper marginal seal
11) gingival irritation- may cause hyperaemia & bleeding

2) Micro/ Macro abrasion :-

This technique involves applying of 18% hcl to soften the enamel And then abrading it with a controlled abrasive technique With pumice to remove superficial stains / defects. Instead of pumice, even silicon carbide may be used with 11%hcl.

1) improved method for superficial stains
2) safer method
3) involves physical removal of tooth structure

1) can cause sensitivity
2) causes wearing of tooth structure
3) patients might not allow cutting of tooth structure
4) defect may persist after finishing of technique for which a restorative alternative is needed

3) Bleaching :-

This procedure has many methods and techniques involving various solutions in each technique.

1) easy
2) time saving
3) cheaper
4) patient acceptance better
5) can be carried out both in office & at home

1) requires patient cooperation(especially for home bleaching)
2) cannot be used where teeth have large pulps
3) cannot be used where teeth are too dark
4) cannot be used where the patient expectations are too high
5) cannot be used in impatient patients
6) causes cervical resorption
7) cannot be used in attritioned teeth which might cause sensitivity
8) cannot be used where teeth are bonded, laminated or have extensive restorations
9) not a perfect technique & merely changes colour to variable depths
10) lasts for only 1 - 3 years (short period)

A) Vital tooth inoffice power bleaching
This technique uses a combination of 37% phosphoric acid & 35%hydrogen peroxide.the oxidation reaction is generally promoted by a heated instument or with intensive this method, one application is carried out weekly for 2 - 6 appointments with each treatment lasting 30 minutes. Use of phosphoric acid by this technique is optional.

1) caustic chemicals are totally under dentist's control.
2) soft tissue protection is better achieved by dentist.
3) bleaching of tooth is achieved more rapidly

1) slightly costly procedure.
2) unpredictable results.
3) uncertain duration of treatment
4) soft tissue damage possible for both dentist & patient.
5) rubber dam causes discomfort.
6) can cause post operative sensitivity.

B) Night guard home bleaching
This procedure involves making an impression of the teeth & pouring a cast of the same, trimming of the cast, application of a blockout resin & fabrication of a night guard tray by a vaccum former machine. After cooling, the tray is trimmed & a 10 - 15% gel of carbamide peroxide is recommended for the same. In this procedure the total treatment time is 2 - 6 weeks.

1) use of lower concentration.
2) ease of application.
3) minimal side effects.
4) lower cost (as compared to veneers)
5) lesser chair time.
6) much lesser labour intensive.

1) have to rely a lot on patient compliance for results.
2) longer treatment time.
3) unknown potential for soft tissue changes with excessive use.
4) treatment results are time & dose dependent.
5) peroxide solution may cause irritation of gingival papilla.
6) teeth become sensitive to temperature changes.

Another method using macken's solution has been described
1 part anaesthetic ether 0.2 ml - removes surface debris 5 parts hcl 38% 1ml --- etches 5 parts hydrogen peroxide 30% 1 ml --- bleaches

Our Approach For Inoffice Bleaching

1) Fluorosis stains / systemic fluorosis
2) Tetracycline stains

Contra indications:
1) Hyperaemic gingiva
2) Persistant periodontal problem cases
3) Fractured incisors / anteriors

Clinical application
The various steps are
1) Cleansing
2) Isolating
3) Etching
4) Rinsing
5) Dehydration
6) Application of solution
7) Scrapping
8) Rinsing
9) Filling

The Steps in detail:
1) cleansing the tooth surface with a nylon tooth brush & a mixture of pumice and water to remove surface debris.
2) isolation is done by application of rubber dam.
3) then dry the tooth surface & do enamel etching with 35% hcl for 20 - 25 seconds.
4) copious rinsing is done to eliminate acid residues & the tooth is subjected to thorogh drying.
5) application of 95% ethyl alcohol to dehydrate the enamel surface.
6) now,the application of 30% hydrogen peroxide(h2o2) is done first for 1 minute followed by alternative application of 5.25% sodium hypochlorite (naohcl) is done for 5 minutes during which it can be re-applied to the tooth surface to keep it wet.
7) the removal of staining molecules can be accelerated by gently scrapping the tooth surface.
8) this is followed by thorough rinsing of tooth surface.
9) this procedure is repeated at the interval of three days for successive sittings till the results are satisfactory.
10) in the end, fill the microcavities caused in the tooth by this solution with a light cure dental adhesive.

1) HCl etches enamel,but does not penetrate.
2) Tooth structure is not damaged.
3) Very very few chances of post - operative sensitivity of tooth.
4) No heat / application is required.
5) Very economical as all the three solutions in quantity of 50 ml. Each cost rs. 250 - 300 (total ).
6) Very low quantity of solutions required at each sitting.

Disadvantages :
1) Fluorosed teeth require larger & repeated sessions to decolorise Them.
2) Some blanching of gingiva can occur which is reversible within Half an hour.
3) Transitory decrease in bond strengh occurs when composite is applied to bleached / etched enamel.however,after a week,no decrease is seen.
4) Unknown duration of treatment.


The different hypothesis concerning the fluorotic stains removal are:
1) if a fluorotic tooth is put into a naohcl solution,it removes all the stains within a few hours.this confirms the organic & exogenous nature of fluorotic tooth stains which are due to elementary impregnation of a hypocalcified & porous tissue. said by :- triller m. Alterations des tissues by marie curie in 1984.
2) scanning electron microscope study (sem) study shows that Posteruptive calcified layer covers the fluorotic enamel surface ; hence the mineral layer removal is essential.


In the end, i would like to conclude that this system of stains Removal seems to be clinically applicable & satisfactory with minimal abrasion of enamel make this technique Universally acceptable , lot of cases have to be treated with this technique.

Here is another excellent paper on treating fluoride stains by resin infiltration ...CLICK HERE

Dry Socket

Oral Prophylaxis made Easy

Tooth whitening

Teeth Whitening Facts and Myths

Fiber reinforced composites in dentistry

Changing concepts in Class I and II cavity preparation

Latest Research On Dental Pain

Caries Vaccine

Curing lights for composite resins

Fluorosis, epidemiology, indices and treatment

Lasers in Root canal treatment and Endodontics

Abfractions? How they are important in Restorative Dentistry

Mouth Healthy Guide

Caries Prevention in Children - The Indian Challenge

Mouth Rinsing before dental procedures.

Infection Control Routine for the Dental Clinic

Aids and Dentistry

Dental Journals by Subject

Rational Use of Medicine

Evidence Based Dentistry

Shade selection and Management

Obstructive Sleep Apnea- Do you know about it?

Genetically modified bacteria may prevent cavities - Put you out of Business?

Fiber Reinforced composites

A primer on all composite class materials

Options for esthetic restorations

Immediate and Early loading of Implants

Treatment of Fluorosis Stains

Dental Abfraction

Emergency in a Dental Clinic

Preparation of Root Canal

Placement of gingival restorative margins

Bonding for the New Millennium

Nanodentistry- the Future

Access Cavity Preparation

Access Cavity Preparation - Molars


Selection of Analgesics

Fifth generation bonding

Restoration of endodontic teeth

About whitening agents

Caries disclosing agents

Composite polishers

LED curing lights

Recurrent Aphthous Stomatitis

New cavity-fighting agent shows promise

Tooth Loss Linked to Pancreatic Cancer in Smokers

2-min brush helps achieve cleaner teeth: Study

Snoring can kill

Gum disease raises death risk in diabetics: study

Brushing Right After Drinking Soda may Harm Teeth

What are Giomers

Benefits of Pre-procedural mouth rinsing?

To Bond Or not to Bond Amalgam

Flowable Composites